

# Seonggyun Kim

[seonggyun.kim@outlook.com](mailto:seonggyun.kim@outlook.com) | +82 10 4142 0178 | Seoul, South Korea | [www.linkedin.com/in/seonggyunkim](https://www.linkedin.com/in/seonggyunkim) | [view online](#)

## SUMMARY

Chemical engineering graduate passionate about industry decarbonization and sustainable energy solutions. Experienced in process simulation, numerical modelling, and techno-economic analysis, with hands-on research expertise in carbon capture processes and hydrogen economy. Strong background in process optimization, energy storage, and industrial-scale applications of low-carbon technologies.

## EDUCATION

|                                                                                                                                                                                                                                                                                                                                                                  |                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| <b>KTH Royal Institute of Technology</b><br><i>M.Sc., Chemical Engineering for Energy and Environment</i>                                                                                                                                                                                                                                                        | <b>Present</b><br><i>Stockholm, Sweden</i> |
| <ul style="list-style-type: none"><li>Thesis: Dynamic reactor modeling and operational optimization of flexible e-methanol production.</li><li>Fields of interest: Industrial energy processes, combined heat and power, process modelling and optimization, energy storage and conversion, industry decarbonization, carbon capture, and utilization.</li></ul> |                                            |

  

|                                                                                                                                                                                                                                             |                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>Hanyang University</b><br><i>B.S., Chemical Engineering</i>                                                                                                                                                                              | <b>Feb. 2023</b><br><i>Seoul, South Korea</i> |
| <ul style="list-style-type: none"><li>Thesis: Simulation and optimization of MDEA-based CO<sub>2</sub> capture process using Aspen HYSYS.</li><li>Fields of interest: Thermodynamics, Reaction engineering, Process optimization.</li></ul> |                                               |

## WORK EXPERIENCE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| <b>AVEVA</b><br><i>Process Simulation Intern   Solver/Thermo Team, R&amp;D Aveva Process Simulation</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Sep. 2024 – Nov. 2024</b><br><i>Lake Forest, California (Remote)</i> |
| <ul style="list-style-type: none"><li>Expanded the thermodynamic database for AVEVA Process Simulation, enhancing industry adoption of advanced carbon capture technologies (Benfield process, AMP-PZ solvent).<ul style="list-style-type: none"><li>Developed electrolyte-NRTL fluid/reaction models for K<sub>2</sub>CO<sub>3</sub>-CO<sub>2</sub>-H<sub>2</sub>O and AMP-PZ-CO<sub>2</sub>-H<sub>2</sub>O systems.</li><li>Conducted thermophysical property regression using Python scripts to align with experimental data.</li></ul></li><li>Built process simulation files for headless testing and prepared technical documents on carbon capture processes.</li></ul> |                                                                         |

  

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| <b>Fraunhofer UMSICHT</b><br><i>Research Assistant   Department of Low Carbon Technologies</i>                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Sep. 2022 – Feb. 2023</b><br><i>Oberhausen, Germany</i> |
| <ul style="list-style-type: none"><li>“Ammonia to Hydrogen” project: a system-level analysis of ammonia decomposition process for hydrogen production.<ul style="list-style-type: none"><li>Designed and optimized an Aspen PLUS process simulation for ammonia-to-hydrogen scenarios with techno-economic evaluation.</li><li>Assembled and tested an electrically heated fixed-bed reactor for ammonia decomposition, optimizing temperature profiles based on activated carbon packing.</li></ul></li></ul> |                                                            |

## SUMMER SCHOOLS & TRAINING

|                                                                                                                                                                                                                          |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <b>International Training School on The Role of CCUS in Industrial Decarbonization</b><br><i>University of Zaragoza</i>                                                                                                  | <b>Jul. 2025</b><br><i>Jaca, Spain</i> |
| <ul style="list-style-type: none"><li>Attended as a member of COST Action TrANsMIT (CA21127)</li><li>Lectures and workshops on CCUS for industrial decarbonization, covering various technologies and sectors.</li></ul> |                                        |

  

|                                                                                            |                                      |
|--------------------------------------------------------------------------------------------|--------------------------------------|
| <b>Nanyang Technological University</b><br><i>Summer Exchange Program</i>                  | <b>Jul. 2018</b><br><i>Singapore</i> |
| <ul style="list-style-type: none"><li>Completed “Introduction to Energy” course.</li></ul> |                                      |

## ACADEMIC PROJECTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <b>Dynamic Reactor Modeling and Operational Optimization of Flexible E-Methanol Production</b>                                                                                                                                                                                                                                                                                                                                                             | <b>Dec. 2025</b> |
| <ul style="list-style-type: none"><li>Built steady-state process model and dynamic reactor model in Aspen Dynamics for Power-to-Methanol process.</li><li>Developed MILP optimization framework integrating dynamic constraints to determine optimal operating schedules against Swedish electricity prices (2019–2023).</li><li>Achieved cost reductions up to 24.5% through flexibility-aware scheduling during high price volatility periods.</li></ul> |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <b><u>Techno-economic Analysis of CCUS in Sweden</u></b>                                                                                                                                                                                                                                                                                                                                                                        | <b>Dec. 2024</b>                                                                           |
| <ul style="list-style-type: none"> <li>Modeled MEA-based carbon capture and CO<sub>2</sub> hydrogenation processes using Aspen Plus V14.</li> <li>Evaluated economic feasibility for storage and utilization scenarios in Sweden's cement (Slite) and pulp (Korsnäs) industries.</li> <li>Led methanol production process design, optimizing kinetic models and reporting levelized costs for breakeven analysis.</li> </ul>    |                                                                                            |
| <b><u>AVEVA Process Simulation Academic Competition 2024 - Hydrogen Economy</u></b>                                                                                                                                                                                                                                                                                                                                             | <b>Feb. 2024</b>                                                                           |
| <ul style="list-style-type: none"> <li>Designed a green ammonia synthesis process integrating solar hydrogen production in AVEVA Process Simulation.</li> <li>Optimized heat integration using high- and low-pressure steam, comparing EAOC and NPV against pipeline transport.</li> <li>The simulation and technical report entries in the three-part project won "Best Overall" prize in Europe.</li> </ul>                   |                                                                                            |
| <b><u>Metal Recovery Using Supercritical CO<sub>2</sub></u></b>                                                                                                                                                                                                                                                                                                                                                                 | <b>Feb. 2024</b>                                                                           |
| <ul style="list-style-type: none"> <li>Investigated scCO<sub>2</sub> extraction for recovering rare earth elements and heavy metals from coal fly ash, ores, and batteries.</li> <li>Demonstrated industrial potential with recovery rates up to 97% for uranium and 90% for rare earth elements.</li> <li>Assessed the technology readiness level (TRL 4) and selectivity challenges for industrial implementation.</li> </ul> |                                                                                            |
| <b><u>Pressurized Pilot-scale Fluidized Bed Gasifier: A Risk Analysis</u></b>                                                                                                                                                                                                                                                                                                                                                   | <b>Dec. 2023</b>                                                                           |
| <ul style="list-style-type: none"> <li>Conducted a Preliminary Hazard Analysis (PHA) and What-if analysis on an existing gasification plant at KTH.</li> <li>Provided risk assessments and recommendations for process safety enhancements.</li> </ul>                                                                                                                                                                          |                                                                                            |
| <b><u>Thermodynamic Analysis of a Biomass-fueled Combined Heat and Power Plant with a Fuel Drier</u></b>                                                                                                                                                                                                                                                                                                                        | <b>Oct. 2023</b>                                                                           |
| <ul style="list-style-type: none"> <li>Thermodynamic analysis of the system components (compressors, turbines, heat exchangers, and a drier).</li> <li>Presented graphical results from pinch analysis and heat exchange calculations.</li> <li>Economic analysis based on different scenarios varying electricity, fuel, and green certificate prices.</li> </ul>                                                              |                                                                                            |
| <b><u>Simulation and Optimization of MDEA-based CO<sub>2</sub> Capture Process</u></b>                                                                                                                                                                                                                                                                                                                                          | <b>Jun. 2022</b>                                                                           |
| <ul style="list-style-type: none"> <li>Developed Aspen HYSYS simulations for process optimization and sensitivity analysis.</li> <li>Verified the relationship between absorber L/G ratio, CO<sub>2</sub> recovery, lean loading, and specific reboiler duty.</li> </ul>                                                                                                                                                        |                                                                                            |
| <b><u>NRTL Parameter Optimization for Alkane/Sulfolane Binary Mixtures</u></b>                                                                                                                                                                                                                                                                                                                                                  | <b>Nov. 2021</b>                                                                           |
| <ul style="list-style-type: none"> <li>Optimized NRTL parameters to accurately calculate liquid-liquid equilibria using MATLAB.</li> <li>Achieved improved accuracy by adding a linear term to the <math>\tau</math> term in the conventional model.</li> </ul>                                                                                                                                                                 |                                                                                            |
| <b><u>Estimation of Energy Penalty in Post-Combustion CCS</u></b>                                                                                                                                                                                                                                                                                                                                                               | <b>Jun. 2021</b>                                                                           |
| <ul style="list-style-type: none"> <li>Estimated energy consumption of CO<sub>2</sub> compression and refrigeration using Lee-Kesler equation of state programmed in MATLAB.</li> <li>Optimized compression processes for high-pressure storage and low-pressure transport pathways.</li> </ul>                                                                                                                                 |                                                                                            |
| <b><u>Eigenfaces: Face Recognition Machine Learning Algorithm</u></b>                                                                                                                                                                                                                                                                                                                                                           | <b>Dec. 2020</b>                                                                           |
| <ul style="list-style-type: none"> <li>Developed a face recognition machine learning algorithm in MATLAB using PCA and SVD.</li> <li>Trained on Yale_B dataset and successfully identified faces outside the training set.</li> <li>Applied dimensionality reduction and pattern recognition techniques for real-world image data.</li> </ul>                                                                                   |                                                                                            |
| <b>COMPUTER SKILLS</b>                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |
| <b>Programming:</b>                                                                                                                                                                                                                                                                                                                                                                                                             | MATLAB, Python, Fortran, MS Excel VBA (Intermediate level); MS Visual C++, C (Basic level) |
| <b>Application:</b>                                                                                                                                                                                                                                                                                                                                                                                                             | AVEVA Process Simulation, Aspen HYSYS, Aspen PLUS, COMSOL; LaTex, Typst, MS Office Suite   |
| <b>LANGUAGES</b>                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| <ul style="list-style-type: none"> <li>Korean: Native</li> <li>English: Proficient</li> <li>Swedish: Beginner</li> </ul>                                                                                                                                                                                                                                                                                                        |                                                                                            |
| <b>OTHER</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |
| <ul style="list-style-type: none"> <li>Completed military service in Republic of Korea Air Force Band (Mar. 2019 – Jan. 2021)</li> <li>Hobbies: Jazz performance/composition, Linux ricing</li> </ul>                                                                                                                                                                                                                           |                                                                                            |